Analysis of Ratios in Multivariate Morphometry

نویسندگان

  • Hannes Baur
  • Christoph Leuenberger
چکیده

The analysis of ratios of body measurements is deeply ingrained in the taxonomic literature. Whether for plants or animals, certain ratios are commonly indicated in identification keys, diagnoses, and descriptions. They often provide the only means for separation of cryptic species that mostly lack distinguishing qualitative characters. Additionally, they provide an obvious way to study differences in body proportions, as ratios reflect geometric shape differences. However, when it comes to multivariate analysis of body measurements, for instance, with linear discriminant analysis (LDA) or principal component analysis (PCA), interpretation using body ratios is difficult. Both techniques are commonly applied for separating similar taxa or for exploring the structure of variation, respectively, and require standardized raw or log-transformed variables as input. Here, we develop statistical procedures for the analysis of body ratios in a consistent multivariate statistical framework. In particular, we present algorithms adapted to LDA and PCA that allow the interpretation of numerical results in terms of body proportions. We first introduce a method called the "LDA ratio extractor," which reveals the best ratios for separation of two or more groups with the help of discriminant analysis. We also provide measures for deciding how much of the total differences between individuals or groups of individuals is due to size and how much is due to shape. The second method, a graphical tool called the "PCA ratio spectrum," aims at the interpretation of principal components in terms of body ratios. Based on a similar idea, the "allometry ratio spectrum" is developed which can be used for studying the allometric behavior of ratios. Because size can be defined in different ways, we discuss several concepts of size. Central to this discussion is Jolicoeur's multivariate generalization of the allometry equation, a concept that was derived only with a heuristic argument. Here we present a statistical derivation of the allometric size vector using the method of least squares. The application of the above methods is extensively demonstrated using published data sets from parasitic wasps and rock crabs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SLOPE PROFILE MORPHOMETRY AS AN INDICATOR FOR SLOPE MOVEMENT

Two dimensional slope profile morphometric investigation in a part of the land failure prone Garhwal region of the Lesser Himalaya, Tehri district, U. P., India, indicates that the landslip morphology is closely related to the dominant movement processes active in this terrain. Technique developed for the morphometric analysis of landslips involves the use of five morphometric indices. Each ind...

متن کامل

Modeling of Banks ‌Bankruptcy in Iran (Multivariate Statistical Analysis)

In this paper we construct a modeling for detection of banks which are experiencing serious problems. Sample and variable set of the study contains 30 banks of Iran during 2006-2014 and their financial ratios. Well known multivariate statistical technique (principal component analysis) was used to explore the basic financial characteristics of the banks, and discriminant Logit and Probit models ...

متن کامل

P 24: Evaluation of the Voxel Based Morphometry in Quantitative Analysis of Brain MRI Images

Introduction: Voxel based morphometry is a type of statistical parametric mapping that can be used to investigate the effect of diseases such as epilepsy, Alzheimer's disease and Parkinson's disease or other agent such as skills on brain structure (white matter, gray matter and cerebrospinal fluid). The aim of this study is evaluate the effectiveness of this method in detection of differen...

متن کامل

Evaluation of Nuclear Morphometry and Ki-67 Index in Clear Cell Renal Cell Carcinomas: a Five‌-Year Study

Background and objective: Clear Cell Renal Cell Carcinoma (CCRCC) is the most common adult renal neoplasm. Staging and grading of RCC are important predictors of survival. Fuhrman nuclear grading is widely used for CCRCC, the subjective nature of which has prompted more objective methods to evaluate nuclear features. Furthermore, Ki-67, a reliable marker of cellular pr...

متن کامل

Multivariate Tensor-Based Brain Anatomical Surface Morphometry via Holomorphic One-Forms

Here we introduce multivariate tensor-based surface morphometry using holomorphic one-forms to study brain anatomy. We computed new statistics from the Riemannian metric tensors that retain the full information in the deformation tensor fields. We introduce two different holomorphic one-forms that induce different surface conformal parameterizations. We applied this framework to 3D MRI data to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2011